なぜPLAは3Dプリンタで広く使われるのか
PLAはあまり一般的にはなじみがない樹脂ですが、なぜ3Dプリンタでは広く使われるのでしょうか。世の中にはたくさんの種類の樹脂がありますが、その中でもPLAがよく用いられる理由は、大きくは以下の3点になるかと思います。
収縮率が小さい
PLAは液体から固体になる際の収縮率(成形収縮率)がとても小さい素材です。そのため造形精度が高く、元の3Dデータに近い造形品を作りやすいことがあげられます。
FDM式の3Dプリンタでは収縮が小さいことが重要です。収縮が大きい材料はベッドからはがれやすく、形状や室温によっては造形途中で割れが発生することもあります。造形中のトラブルが起きやすくなるほか、もとの寸法どおり正確に出力することが難しい傾向となります。ABSと比較してPLAは出力しやすいといわれますが、これは成形収縮率がABS(0.4~0.6%)よりPLA(0.3~0.5%)の方が小さいことによります。
溶融時に有害物質や臭気が発生しない
PLAは基本的には樹脂を溶融しても有害物質が発生せず、安全性の高い素材だと考えられています。
FDM式の3Dプリンタでは樹脂を長時間溶かし続けるため、樹脂の熱分解によるガスが発生しやすい装置です。溶けた樹脂が出てくるときのガスもありますが、ノズル周囲やヒートブロックに付着した樹脂が分解ガスを放出することもあります。3Dプリンタに適合できる樹脂(収縮が低く、低温で溶融する樹脂)は塩化ビニル(PVC)、アクリル(PMMA)なども考えられますが、これらは熱分解で塩素ガス、アクリル酸ガスなど有害物質を発生させるためか、ほとんど使用されていません。ABS、HIPSなどの樹脂も使われていますが、石油系の不快臭が発生します。ABSは微粒子を発生させ、健康障害を引き起こす可能性があるとする文献もあります。
低温で溶融する
PLAは融点が約170℃で、比較的低い温度で使用できます。
低温で樹脂が溶融できればより安全に扱えるため、家庭用3Dプリンタには向いています。他の近い融点の樹脂はPE(ポリエチレン:融点130℃)、PP(ポリプロピレン:融点160℃)などもありますが、これらの樹脂は成形収縮率がとても大きいため3Dプリンタには不適です。
関連ページ
- PLA樹脂のL体とD体について
- ガラス転移点の3Dプリンタ向け解説
- 吸水しにくいフィラメントの選び方
- 結晶性樹脂と非晶性樹脂の違い 3Dプリンタの観点から
- PLA樹脂の歴史と現状
- ABSとはどのような樹脂なのか 3Dプリンタの観点から
- プラスチックの耐熱温度とは何か
- PLAの生分解プラスチックとしての誤解
- PLA表面処理におけるジクロロメタンの危険性
- フィラメントの重さ、長さをWEBで計算
- ホットエンドでフィラメント樹脂もれが起きる理由
- PLAが加水分解すると3Dプリンタでは何が起きるか
- フィラメント交換で3Dプリンタを一時停止させる方法(Simplify3D)
- メルトフラクチャの発生原因と対策
- 世界のPLA(ポリ乳酸)樹脂メーカー
- 樹脂のコンパウンドとは
- PLA樹脂は何に使われている?
- PETG樹脂とは? PETGとPETの違い
- 繊維強化プラスチックの3Dプリント基礎知識
- 2019年に発生したPLA樹脂の世界的需給ひっ迫について
- 樹脂の射出グレードと押出グレードの違い
- PLA樹脂原料の取り扱い、乾燥、再生に関する基礎知識
- 3Dプリンタ ダイレクト式とボーデン式の違いは?
- 3Dプリンタ フィラメントに合ったノズル材質の選び方
- 3Dプリンタのノズル詰まり 考えられる3つのメカニズム
- プラスチックの成形原料「樹脂ペレット」とは?
- PLAの生分解メカニズムについて
- 3Dプリンタ造形中にどんな有害ガスが出るか
- 3Dプリント造形品のアニール処理で何が改善する?
- What happens moistured filament used?
- フィラメントの乾燥で気を付けておきたい3つのこと
- 3Dプリンタで反りはなぜ起こる?(FDM)
- 導電性フィラメントとは?
- PLA樹脂の結晶化 アニール時に起きていること
- FDM式3Dプリンタの分解能の限界はどこにある?
- 造形品の積層強度は結局どうすれば上げられるのか
- なぜこれまで3Dプリンタにはエンクロージャーがなかったのか
- PLA樹脂 2021年の展望
- 3Dプリンタのファーストレイヤーの考え方
- クリーニングフィラメントとは?